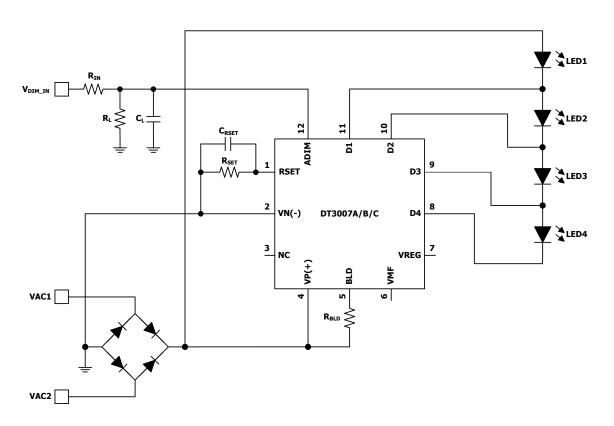


1. General Description

The DT3007A/B/C is AC LED drivers with four internal current sources for AC LED light applications. The DT3007A/B/C drives the LEDs directly through the Bridge rectifier supply without AC-DC conversion circuit. It uses an external resistor to set the LED current with a high accuracy. The DT3007A/B/C provides protection against over temperature. The DT3007A/B/C is available in 12-pin QFN Package.

2. Features

- High power Factor > 0.97
- Low Total Harmonic Distortion < 15%
- Adjustable LED driving current with external resistors
- TRIAC Dimmable
- Analog Dimming Function
- Including Bleeder Current
- Power Compensation within ± 5%
- Regulation output supply for biasing the external device
- Over Temperature Protection
- Under Voltage Protection
- Thermally Enhanced 12 Pin QFN

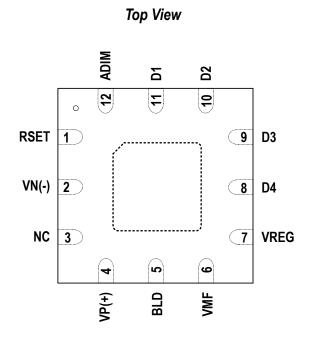

3. Applications

AC LED light Applications

4. Package Information

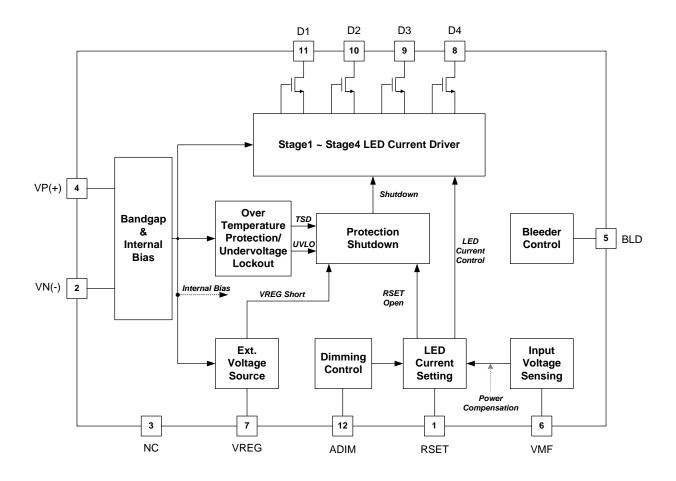
Type number	Package	Package				
Type number	Name	Description	Marking			
DT3007A	12 QFN	12 QFN	DT3007A			
DT3007B	12 QFN	12 QFN	DT3007B			
DT3007C	12 QFN	12 QFN	DT3007C			

5. Typical Application



Turnianel V/AC	Recommend Typical V⊧				
Typical VAC	LED1	LED2	LED3	LED4	
120V	43V	43V	21.5V	21.5V	
220V	64.5V	64.5V	64.5V	64.5V	

DT3007A/B/C


4 Channels AC LED Driver IC

6. Pin Information

Pin	Symbol	I/O	Description
1	RSET	Ι	Resistor Connection for Driver Current Setting
2	VN(-)	Ι	Voltage Input (-)
3	NC	-	No Connection
4	VP(+)	I	Voltage Input (+)
5	BLD	0	Bleeder Current Output
6	VMF	I	Voltage Input for Multi-Function
7	VREG	0	Reference Voltage Output
8	D4	0	Driver output – 4
9	D3	0	Driver output – 3
10	D2	0	Driver output – 2
11	D1	0	Driver output – 1
12	ADIM	Ι	Analog Dimming Input

7. Block Diagram

8. Absolute Maximum Ratings

Parameter	Symbol	Value	Unit
VP(+) to VN(-), BLD, D1~D4	V _{HV}	-0.3 ~ +450	V
VREG to VN(-)	V _{CC}	-0.3 ~ +9	V
Other Pins to VN(-)	V _{LV}	-0.3 ~ +6.5	V
Maximum Junction Temperature	T _{JMAX}	+150	°C
Storage Temperature	T _{STG}	-65 ~ +150	°C
ESD (HBM)	V _{HBMV}	1.5	kV
Power Dissipation (Note1)	P _D	3	W
Maximum Driver Stage Current(Note2)	Ţ	240 (V _{AC} =100V condition)	mA
Maximum Driver Stage Current ^(Note2)	I_{D4}	110 (V _{AC} =220V condition)	mA

Note 1)

- Package power dissipation is dependent on the PCB board type, size, layout, pattern and thermal heat sink. Therefore, the board material is recommended the use of metal PCB.

Note 2)

- The maximum drive current means the guaranteed operating current.
- The maximum drive current is not the DC current.
- It is the maximum peak current of the fourth stage for guaranteeing normal operation in AC direct drive method.
- The operating current must be used within the allowed package dissipation.
- The operating drive current must be determined within the maximum drive current with margin.

9. Package Thermal Characteristics

Parameter	Symbol	Value	Unit
Junction to ambient thermal resistance	Θ_{JA}	34.65	°C/W
Junction to case thermal resistance	Θ_{JC}	11.25	°C/W

*Test conditions

- Θ_{JA} : The package thermal impedance is calculated in accordance with JESD 51-7

- Θ_{JC} : The package thermal impedance is calculated in accordance with JESD 51-14

10. Electrical Characteristics

Parameter	Symbol	Conditions	Min	Тур.	Max	Unit
General		·	<u>.</u>			·
Supply Voltage	V _{IN}		90		270	VAC
Bias Current	I _{BIAS}			2		mA
Power Factor	PF		0.97			-
Total Harmonic Distortion	I _{THD}				15	%
Driver Stage Current for DT300	7A	1			I	
	I _{D1}	VP(+)=40V, VN(-)=0V, D1=40V, R _{SET} =6.04kΩ		15.00		mA
Driver Stage Current ^(Note 3)	I _{D2}	VP(+)=40V, VN(-)=0V, D2=40V, R_{SET} =6.04kΩ		26.25		mA
	I _{D3}	VP(+)=40V, VN(-)=0V, D3=40V, R_{SET} =6.04kΩ		33.75		mA
	I _{D4}	VP(+)=40V, VN(-)=0V, D4=40V, R _{SET} =6.04kΩ		37.50		mA
Driver Stage Current for DT300	7B					
Driver Stage Current ^(Note 3)	I_{D1}	VP(+)=40V, VN(-)=0V, D1=40V, R _{SET} =6.04kΩ		30.00		mA
	I _{D2}	VP(+)=40V, VN(-)=0V, D2=40V, R _{SET} =6.04kΩ		52.50		mA
	I _{D3}	VP(+)=40V, VN(-)=0V, D3=40V, R _{SET} =6.04kΩ		67.50		mA
	I _{D4}	VP(+)=40V, VN(-)=0V, D4=40V, R_{SET} =6.04kΩ		75.00		mA
Driver Stage Current for DT300	7C					
	I _{D1}	VP(+)=40V, VN(-)=0V, D1=40V, R _{SET} =6.01kΩ		60.00		mA
Driver Stage Current ^(Note 3)	I _{D2}	VP(+)=40V, VN(-)=0V, D2=40V, R _{SET} =6.01kΩ		105.00		mA
Driver Stage Current	I _{D3}	VP(+)=40V, VN(-)=0V, D3=40V, R _{SET} =6.01kΩ		135.00		mA
	I _{D4}	VP(+)=40V, VN(-)=0V, D4=40V, R _{SET} =6.01kΩ		150.00		mA
VREG						
VREG Voltage	V_{REG_H}	No load		7		V
ADIM						
ADIM Operating Voltage Limit	ADIM _{LM}			2.00		v
ADIM Turn Off Threshold	$ADIM_{OFF_TH}$	Falling		0.40		V
ADIM Turn On Threshold	ADIM _{ON_TH}	Rising, With C _{VREG}		0.44		V
ADIM Turn On Hysteresis	ADIM _{ON_HYS}	Rising, With C _{VREG}		40		mV

Note 3)

- Driver stage current is based on the simulation results.

10. Electrical Characteristics (Continued)

$T_A = 80^{\circ}$ C, $V_{AC} = 100/120/220$ V, unless otherwise specified

Parameter	Symbol	Conditions	Min	Тур.	Max	Unit
Protection						
VP(+) Under-voltage Lockout Threshold	V _{UVLO}			10		V
VP(+) Turn On Threshold	$V_{IN_{TH}}$			15		V
Over Temperature Threshold	Τ _{ΟΤΡ}			160		°C

11. Functional Description

LED Current and Power Setting

The LED current can be set by using the RSET pin. Therefore LED power dissipation can be set by adjusting the LED current. The resistor connected between RSET pin and VN(-). Use the table 1 below to choose the value of R_{SET} for the desired power dissipation. Also, for a more stable operation in DT3007A/B/C, it is recommended to connect the capacitor of 1~10nF in parallel with R_{SET} .

VAC	Туре	Power Dissipation	R seт ± 1%
	А	4W	8.11 kΩ
1001/	В	8W	8.40 kΩ
100V	С	12W	6.28 kΩ
	С	16W	8.61 kΩ
	А	4W	6.45 kΩ
1201/	В	8W	6.69 kΩ
120V	С	12W	5.30 kΩ
	С	16W	7.31 kΩ
	A	4W	3.20 kΩ
22017	А	8W	6.96 kΩ
220V	В	12W	5.28 kΩ
	В	16W	7.20 kΩ

Table 1. R_{SET} Setting for Power Dissipation

* The R_{SET} values are based on the simulation results.

* The actual R_{SET} values must be determined by the actual LED arrays and board condition for given input power requirement.

R_{SET} Open

When RSET Pin is opened, the DT3007A/B/C becomes LED off, that is, all the LED output currents become zero. When RSET Pin is shorted to VN(-), all the output currents have its extremely low current level below a few hundreds of μ A determined by the offset voltages of the amplifiers consisting the LED current sources.

Over Temperature Protection

The DT3007A/B/C becomes LED off when the temperature exceeds 160°C and restarts when the junction temperature falls. If a capacitor is connected to VREG, the DT3007A/B/C is restarts by the VREG reset.

VREG

VREG pin supplies regulated 7V (Typ.) for biasing the peripheral device. When VREG is shorted to VN(-) DT3007A/B/C becomes LED off.

Bleeder Current

The Bleeder current is the internal current source. Their maximum output current can be adjusted by the resistor value connected between the BLD pin and VP(+). The bleeder current is $0\sim35$ mA.

Analog Dimming

The LED brightness can be adjusted by applying DC voltage to ADIM Pin. When 0.40V< ADIM pin voltage < 2.0V, DT3007A/B/C operates in positive polarity mode as shown in figure 1. When the ADIM DC voltage becomes over 2.0V, the LED brightness is clamped at their maximum flux. When ADIM DC voltage is decreased to 0.40V, LED current becomes off. For a more stable ADIM function in DT3007A/B/C, that is, for obtaining non-flickering operation in LED light at the minimum ADIM voltage, it is recommended to use the 40mV hysteresis by connecting a capacitor in VREG.

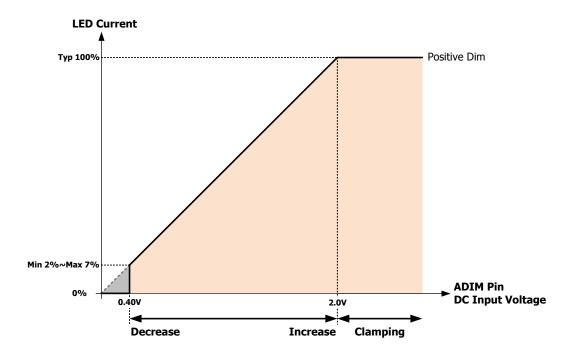


Figure 1. ADIM Operation Ranges

Multi-Functions Setting

The DT3007/B/C has a multi-functional operation. The following table 2 shows the multi-functional operation mode and each operation mode is divided by the VMF pin voltage that is set by the external components.

VMF Ranges	Mode Section	Remarks
$0.00 \le \text{VMF} \le 0.36\text{V}$	TRIAC Dimming Control Mode - Phase Cut	LED current=OFF
0.36 < VMF ≤ 3.00V	TRIAC Dimming Control Mode	 Min current=Max.10% in comparison with typ.100% of the normal mode Max current=Depends on the max angle of the dimmer.
$3.50 \leq VMF < 5.00V$	Power Compensation Mode	
OPEN (Internal Pull-up)	Normal Mode	LED current=Typ. 100%

Table 2. VMF Ranges for Multi-Functions

TRIAC Dimming Control

The DT3007A/B/C can be used with different types of TRIAC dimming control switches. The DT3007A/B/C has phase cut off function to prevent misfiring which can be happened at narrow dimming angle. When phase cut off function initiates, the DT3007A/B/C turns off the LED output. The angle of phase cut off can be adjustable by the external component as shown in figure 2. The VMF pin voltage for phase cut off is 0.36V.

Figure 2. Typical Application for TRIAC Dimming Control

Power Compensation

				_	
D A A		Tech			
1 1 1 1 1 1	B I	ACT	no	Inc	11/
	-				4 V -

The DT3007A/B/C has power compensation function to minimize power variation. The power compensation function make the input power to within $\pm 5\%$ of its nominal input power. The power compensation works only when the AC input voltage is increased from its nominal value up to +20% as shown below table 3. If the VMF pin voltage is increasing more than 3.5V, then the DT3007A/B/C begins to control the LED driving current to regulate the input power to within $\pm 5\%$ of its nominal input power. If the VMF pin voltage is decreasing less than 3.5V, then no input power compensation operation occurs. Do set the VMF pin voltage to 3.5V by using external components at the nominal AC input voltage as shown in figure 3. When the VMF pin is opened, no power compensation is operated.

Typical VAC	VAC range for Power Compensation	Power Variation
100V	100~120V	±5%
120V	120~144V	±5%
220V	220~264V	±5%

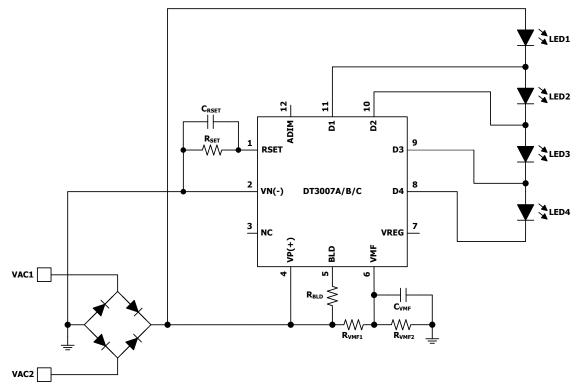
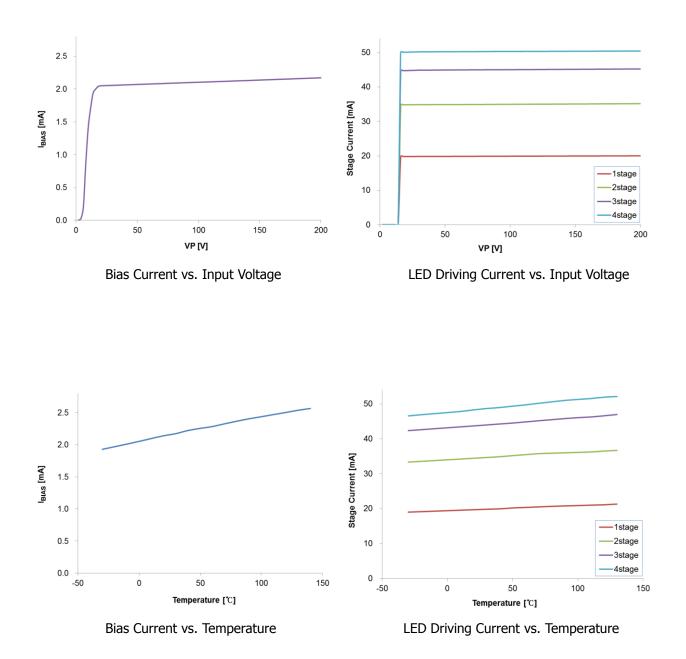



Table 3. Power Compensation Specification

Figure 3. Typical Application for Power Compensation

12. Typical Performance Characteristics

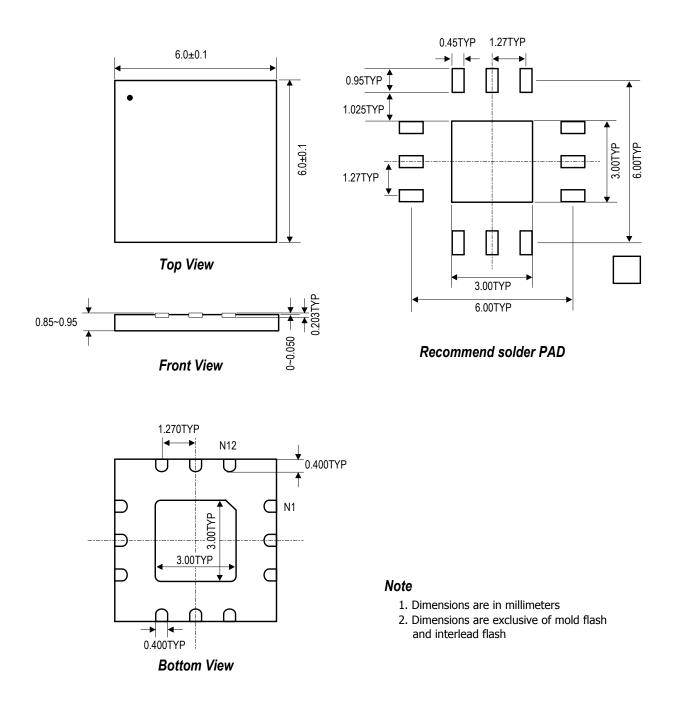
VP Range : $0 \sim 200V$, Temperature Range : $-30 \sim 140$ °C, R_{SET} : $2.02k\Omega$, Unless otherwise noted.

13. Package Marking Information

1'st row : Acrich3 logo

2'nd row : DMBT product code

- . DT3007A
- . DT3007B
- . DT3007C


3'rd row : Original wafer lot no.

4'th row : PKG ass'y house code + Manufacturing Work Week

- . "A" means that PKG Ass'y site code
- . "YY" is a year code / "WW" is a weekly code

14. Package Outline Dimensions

15. Important notices

- This products and its characteristic can be added or changed without notice. Before considering use or application, you'd better consult the D.M.B Technology Co., Ltd.
- No part of this publication may be reproduced or transmitted or copied in any form or by any means without permission of D.M.B Technology.
- Although our product has internal protective circuit, you'd better adopt safety circuits or measures externally to prevent undesired probabilistic device failure.
- D.M.B technology always strives to make a high quality and high reliability products.

16. Contact information

For technical information	techinfo@dmbtech.com
For sales information	snm@dmbtech.com
For additional information	http://www.dmbtech.com